Third order maximum-principle-satisfying direct discontinuous Galerkin methods for time dependent convection diffusion equations on unstructured triangular meshes

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Third order maximum-principle-satisfying direct discontinuous Galerkin methods for time dependent convection diffusion equations on unstructured triangular meshes

Article history: Received 16 August 2015 Received in revised form 3 December 2015 Accepted 17 December 2015 Available online 21 December 2015

متن کامل

Maximum-principle-satisfying second order discontinuous Galerkin schemes for convection-diffusion equations on triangular meshes

We propose second order accurate discontinuous Galerkin (DG) schemes which satisfy a strict maximum principle for general nonlinear convection-diffusion equations on unstructured triangular meshes. Motivated by genuinely high order maximum-principle-satisfying DG schemes for hyperbolic conservation laws [14, 26], we prove that under suitable time step restriction for forward Euler time stepping...

متن کامل

Maximum-Principle-Satisfying Third Order Discontinuous Galerkin Schemes for Fokker-Planck Equations

We design and analyze up to third order accurate discontinuous Galerkin (DG) methods satisfying a strict maximum principle for Fokker–Planck equations. A procedure is established to identify an effective test set in each computational cell to ensure the desired bounds of numerical averages during time evolution. This is achievable by taking advantage of the two parameters in the numerical flux ...

متن کامل

Maximum-Principle-Satisfying and Positivity-Preserving High Order Discontinuous Galerkin Schemes for Conservation Laws on Triangular Meshes

Abstract In [22], two of the authors constructed uniformly high order accurate finite volume and discontinuous Galerkin (DG) schemes satisfying a strict maximum principle for scalar conservation laws on rectangular meshes. The technique is generalized to positivity preserving (of density and pressure) high order DG or finite volume schemes for compressible Euler equations in [23]. The extension...

متن کامل

Positivity-Preserving Well-Balanced Discontinuous Galerkin Methods for the Shallow Water Equations on Unstructured Triangular Meshes

The shallow water equations model flows in rivers and coastal areas and have wide applications in ocean, hydraulic engineering, and atmospheric modeling. In [36], the authors constructed high order discontinuous Galerkin methods for the shallow water equations which can maintain the still water steady state exactly, and at the same time can preserve the nonnegativity of the water height without...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational Physics

سال: 2016

ISSN: 0021-9991

DOI: 10.1016/j.jcp.2015.12.039