Third order maximum-principle-satisfying direct discontinuous Galerkin methods for time dependent convection diffusion equations on unstructured triangular meshes
نویسندگان
چکیده
منابع مشابه
Third order maximum-principle-satisfying direct discontinuous Galerkin methods for time dependent convection diffusion equations on unstructured triangular meshes
Article history: Received 16 August 2015 Received in revised form 3 December 2015 Accepted 17 December 2015 Available online 21 December 2015
متن کاملMaximum-principle-satisfying second order discontinuous Galerkin schemes for convection-diffusion equations on triangular meshes
We propose second order accurate discontinuous Galerkin (DG) schemes which satisfy a strict maximum principle for general nonlinear convection-diffusion equations on unstructured triangular meshes. Motivated by genuinely high order maximum-principle-satisfying DG schemes for hyperbolic conservation laws [14, 26], we prove that under suitable time step restriction for forward Euler time stepping...
متن کاملMaximum-Principle-Satisfying Third Order Discontinuous Galerkin Schemes for Fokker-Planck Equations
We design and analyze up to third order accurate discontinuous Galerkin (DG) methods satisfying a strict maximum principle for Fokker–Planck equations. A procedure is established to identify an effective test set in each computational cell to ensure the desired bounds of numerical averages during time evolution. This is achievable by taking advantage of the two parameters in the numerical flux ...
متن کاملMaximum-Principle-Satisfying and Positivity-Preserving High Order Discontinuous Galerkin Schemes for Conservation Laws on Triangular Meshes
Abstract In [22], two of the authors constructed uniformly high order accurate finite volume and discontinuous Galerkin (DG) schemes satisfying a strict maximum principle for scalar conservation laws on rectangular meshes. The technique is generalized to positivity preserving (of density and pressure) high order DG or finite volume schemes for compressible Euler equations in [23]. The extension...
متن کاملPositivity-Preserving Well-Balanced Discontinuous Galerkin Methods for the Shallow Water Equations on Unstructured Triangular Meshes
The shallow water equations model flows in rivers and coastal areas and have wide applications in ocean, hydraulic engineering, and atmospheric modeling. In [36], the authors constructed high order discontinuous Galerkin methods for the shallow water equations which can maintain the still water steady state exactly, and at the same time can preserve the nonnegativity of the water height without...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2016
ISSN: 0021-9991
DOI: 10.1016/j.jcp.2015.12.039